

Improved Standard Products®

4391DFN SERIES

MINIATURE/NON-MAGNETIC 8-PIN DFN PACKAGE N-CHANNEL JFET SWITCH

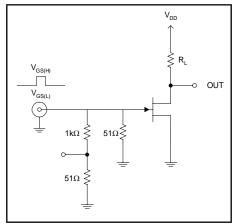
FEATURES								
LOW ON RESISTANCE	$r_{DS(on)} \le 30\Omega$							
FAST SWITCHING toN ≤ 15ns								
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature	-55 to 150°C							
Junction Operating Temperature	-55 to 150°C							
Maximum Power Dissipation								
Continuous Power Dissipation ³	300mW							
Maximum Currents								
Gate Current	50mA							
Maximum Voltages								
Gate to Drain or Source	-40V							

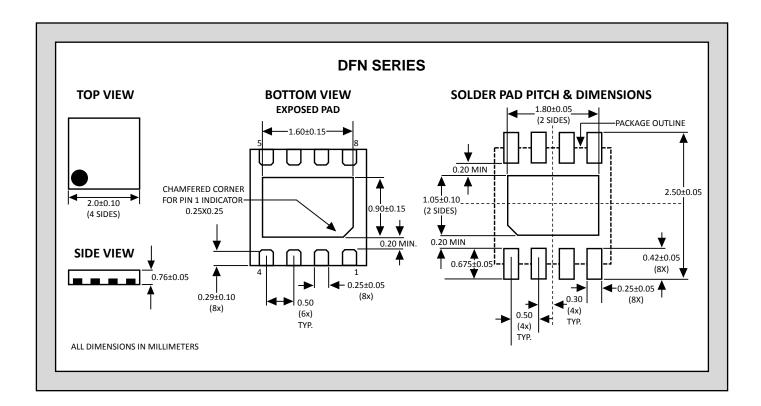
STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC	TYP	4391	DFN	4392	DFN	4393	4393DFN		4393DFN		DFN		IT CONDITIONS
STIVI.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS				
BV _{GSS}	Gate to Source Breakdown Voltage		-40		-40		-40			$I_{G} = -1 \mu A, V_{DS} = 0 V$				
$V_{GS(off)}$	Gate to Source Cutoff Voltage		-4	-10	-2	-5	-0.5	-3		$V_{DS} = 15V, I_{D} = 10nA$				
$V_{GS(F)}$	Gate to Source Forward Voltage	0.7		1		1		1	V	$I_G = 1mA$, $V_{DS} = 0V$				
		0.25						0.4	V	$V_{GS} = 0V$, $I_D = 3mA$				
$V_{DS(on)}$	Drain to Source On Voltage	0.3				0.4				$V_{GS} = 0V$, $I_D = 6mA$				
		0.35		0.4						$V_{GS} = 0V$, $I_D = 12mA$				
IDSS	Drain to Source Saturation Current ²		50		25		5		mA	$V_{DS} = 20V$, $V_{GS} = 0V$				
Igss	Gate Leakage Current	005		-1.0		-1.0		-1.0	nA	$V_{GS} = -20V$, $V_{DS} = 0V$				
lg	Gate Operating Current	005							IIA	$V_{DG} = 15V, I_D = 10mA$				
I _{D(off)}	Drain Cutoff Current	.005		1.0		1.0		1.0	nΑ	$V_{DS} = 10V, V_{GS} = -12V$				
r _{DS(on)}	Drain to Source On Resistance		·	30		60		100	Ω	$V_{GS} = 0V$, $I_D = 1mA$				

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC	TYP	4391DFN		4392DFN		4393DFN		UNIT	CONDITIONS	
STIVI.	CHARACTERISTIC	IIF	MIN	MAX	MIN	MAX	MIN	MAX	UNII	CONDITIONS	
G fs	Forward Transconductance	6							mS	$V_{DS} = 20V, I_{D} = 1mA$	
gos	Output Conductance	25							μS	f = 1 kHz	
Ciss	Input Capacitance	13							pF		$V_{DS} = 20V$, $V_{GS} = 0V$ f = 1MHz
		3.6								$V_{DS} = 0V$, $V_{GS} = -5V$ f = 1MHz	
Crss	Reverse Transfer Capacitance	3.5								$V_{DS} = 0V$, $V_{GS} = -7V$ f = 1MHz	
		3.1								$V_{DS} = 0V$, $V_{GS} = -12V$ f = 1MHz	
en	Equivalent Input Noise Voltage	3							nV/√Hz	$V_{DS} = 10V, I_{D} = 10mA$ f = 1kHz	


SWITCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)


SYM.	CHARACTERISTIC	TYP	4391	4391DFN		4392DFN		4393DFN		CONDITIONS
STIVI.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
t _{d(on)}	Turn On Time	2							- ns	s V _{DD} = 10V, V _{GS(H)} = 0V
tr	Tum On Time	2								
t _{d(off)}	Turn Off Time	6								
t _f	Tuill Oil Tillie	13								

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	4391DFN	4392DFN	4393DFN
$V_{GS(L)}$	-12V	-7V	-5V
RL	800Ω	1600Ω	3200Ω
I _{D(on)}	12mA	6mA	3mA

SWITCHING TEST CIRCUIT

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. Derate 2.8mW/°C above 25°C

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.