High Voltage, Latch-Up Proof, 4-Channel Multiplexer

FEATURES

```
Latch-up proof
8 kV HBM ESD rating
- Low on resistance (<10 \Omega)
- }\pm9\textrm{V}\mathrm{ to }\pm22 V dual-supply operatio
- 9 V to 40 V single-supply operation
- 48 V supply maximum ratings
- Fully specified at }\pm15\textrm{V},\pm20\textrm{V},+12\textrm{V}\mathrm{ , and +36 V
- }\mp@subsup{V}{SS}{}\mathrm{ to }\mp@subsup{V}{DD}{}\mathrm{ analog signal range
```


APPLICATIONS

- Relay replacement
- Automatic test equipment
- Data acquisition
- Instrumentation
- Avionics
- Audio and video switching
- Communication systems

GENERAL DESCRIPTION

The ADG5404 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

The ADG5404 is designed on a trench process, which guards against latch-up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.

The ADG5404 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-beforemake switching action.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. LOW R $R_{O N}$.
3. Dual-Supply Operation. For applications where the analog signal is bipolar, the ADG5404 can be operated from dual supplies of up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation. For applications where the analog signal is unipolar, the ADG5404 can be operated from a single-rail power supply of up to 40 V .
5. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathbb{I N H}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.

TABLE OF CONTENTS

Features1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Specifications 3
$\pm 15 \mathrm{~V}$ Dual Supply 3
$\pm 20 \mathrm{~V}$ Dual Supply 4
+12 V Single Supply 5
+36 V Single Supply 6
Continuous Current Per Channel, S or D 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Truth Table 9
Typical Performance Characteristics 10
Test Circuits 14
Terminology. 16
Trench Isolation 17
Applications Information 18
Outline Dimensions 19
Ordering Guide. 19
Evaluation Boards 19
REVISION HISTORY
5/2024—Rev. B to Rev. C
Changes to Drain Off Leakage, ID (Off) Parameter; Table 1 3
Deleted Note 1; Table 1 3
Changes to Drain Off Leakage, I_{D} (Off) Parameter; Table 2 4
Deleted Note 1; Table 2 4
Changes to Drain Off Leakage, I_{D} (Off) Parameter; Table 3 5
Deleted Note 1; Table 3 5
Changes to Drain Off Leakage, I_{D} (Off) Parameter; Table 4 6
Deleted Note 1; Table 4 6
Added Evaluation Boards. 19

SPECIFICATIONS

± 15 V DUAL SUPPLY

$V_{D D}=15 \mathrm{~V} \pm 10 \%, V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta R_{\text {ON }}$ On-Resistance Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{array}{\|l} 9.8 \\ 11 \\ 0.35 \\ \\ 0.7 \\ 1.2 \\ 1.6 \end{array}$	14 0.9 2	$V_{D D}$ to $V_{S S}$ 16 1.1 2.2	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} ; \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{S}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 3 \\ & \pm 2 \end{aligned}$	± 6 ± 24 ± 16	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{S}=V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V} \text {; see Figure } 24 \\ & V_{S}=V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V} \text {; see Figure } 24 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I_{NL} or I_{NH} Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.002 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{I N}=V_{G N D}$ or $V_{D D}$
DYNAMIC CHARACTERISTICS Transition Time, t transition t_{ON} (EN) $t_{\text {OFF }}$ (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, $Q_{\text {INJ }}$ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{S} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}$ (On)	187 242 160 204 125 145 45 220 -78 -58 0.009 53 -0.7 19 92 132	$\begin{aligned} & 285 \\ & 247 \\ & 168 \end{aligned}$	330 278 183 12	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS $I_{D D}$ $I_{S S}$	45 55 0.001		70	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ	$\begin{aligned} & \mathrm{V}_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \\ & \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \end{aligned}$

SPECIFICATIONS

Table 1. (Continued)

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
			1	$\mu \mathrm{max}$	
$V_{D D} / V_{S S}$			$\pm 9 / \pm 22$	$\mathrm{Vmin} / \mathrm{max}$	$\mathrm{GND}=0 \mathrm{~V}$

± 20 V DUAL SUPPLY

$V_{D D}=20 \mathrm{~V} \pm 10 \%, V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & 9 \\ & 10 \\ & 0.35 \\ & \\ & 0.7 \\ & 1.5 \\ & 1.8 \end{aligned}$	13 0.9 2.2	$V_{D D} \text { to } V_{S S}$ 15 1.1 2.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} ; \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{D}}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(O n)$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 3 \\ & \pm 2 \end{aligned}$	± 6 ± 24 ± 16	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, V_{S S}=-22 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} \text {; see Figure } 24 \\ & V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} \text {; see Figure } 24 \\ & V_{S}=V_{D}= \pm 15 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, I_{NL} or $\mathrm{l}_{\mathbb{N H}}$ Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.002 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{G N D}$ or V_{DD}
DYNAMIC CHARACTERISTICS Transition Time, t $_{\text {TRANSITION }}$ t_{ON} (EN) $t_{\text {OFF }}$ (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, $Q_{\text {INJ }}$ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{S} (Off) C_{D} (Off)	$\begin{aligned} & 175 \\ & 224 \\ & 148 \\ & 185 \\ & 120 \\ & 142 \\ & 40 \\ & \\ & 290 \\ & -78 \\ & -58 \\ & 0.008 \\ & \\ & 54 \\ & -0.6 \\ & 18 \\ & 88 \\ & \hline \end{aligned}$	$\begin{gathered} 262 \\ 222 \\ 159 \end{gathered}$	301 250 173 10	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S}=+10 \mathrm{~V} ; \text { see Figure } 30 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S}=10 \mathrm{~V} \text {; see Figure } 32 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S}=10 \mathrm{~V} \text {; see Figure } 32 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S 1}=V_{S 2}=10 \mathrm{~V} \text {; see Figure } 31 \\ & V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} ; \text { see Figure } 33 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 26 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 28 \\ & R_{L}=1 \mathrm{k} \Omega, 20 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; see } \\ & \text { Figure } 29 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} ; \text { see Figure } 27 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 27 \\ & \mathrm{~V}_{S}=0 \mathrm{~V}, f=1 \mathrm{mHz} \\ & V_{S}=0 \mathrm{~V}, f=1 \mathrm{mHz} \end{aligned}$

SPECIFICATIONS

Table 2. (Continued)

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	129			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $I_{D D}$ $I_{s s}$ $V_{D D} / N_{S S}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 110 \\ & 1 \\ & \pm 9 / \pm 22 \end{aligned}$	$\mu \mathrm{A}$ typ μA max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

+12 V SINGLE SUPPLY

$V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta R_{\text {ON }}$ On-Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & 19 \\ & 22 \\ & 0.4 \\ & 0.8 \\ & 4.4 \\ & 5.5 \end{aligned}$	27 1 6.5	$0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}$ 31 1.2 7.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \mathrm{~V}_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(O n)$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 1 \\ & \pm 0.05 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 3 \\ & \pm 2 \end{aligned}$	± 6 ± 24 ± 16	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 24 \\ & V_{S}=V_{D}=1 \mathrm{~V} / 10 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I_{NL} or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.002 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu A \max$ pF typ	$V_{I N}=V_{G N D}$ or $V_{D D}$
DYNAMIC CHARACTERISTICS Transition Time, t transition $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$ $t_{\text {OFF }}$ (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, $\mathrm{Q}_{\mathrm{INJ}}$ Off Isolation Channel-to-Channel Crosstalk	$\begin{aligned} & 266 \\ & 358 \\ & 260 \\ & 339 \\ & 135 \\ & 162 \\ & 125 \\ & \\ & 92 \\ & -78 \\ & -58 \end{aligned}$	446 423 189	515 485 210 45	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+8 \mathrm{~V} \text {; see Figure } 30 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{S}=8 \mathrm{~V} ; \text { see Figure } 32 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { see Figure } 32 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{S 2}=8 \mathrm{~V} \text {; see Figure } 31 \\ & \mathrm{~V}_{S}=6 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} ; \text { see Figure } 33 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{mHz} \text {; see Figure } 26 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{mHz} \text {; see Figure } 28 \end{aligned}$

SPECIFICATIONS

Table 3. (Continued)

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Total Harmonic Distortion + Noise	0.075			\% typ	$R_{L}=1 k \Omega, 6 \mathrm{~V} p-p, f=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 29
-3 dB Bandwidth	43			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 27
Insertion Loss	-1.36			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 27
C_{S} (Off)	22			pF typ	$V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	105			pF typ	$V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	140			pF typ	$\mathrm{V}_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$V_{D D}=13.2 \mathrm{~V}$
I_{DD}	40			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	50		65	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	V min/max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

+36 V SINGLE SUPPLY

$V_{D D}=36 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta R_{0 N}$ On-Resistance Flatness, R $\mathrm{R}_{\text {LAT(ON) }}$	$\begin{array}{\|l} 10.6 \\ 12 \\ 0.35 \\ \\ 0.7 \\ 2.7 \\ 3.2 \end{array}$	15 0.9 3.8	$0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}$ 17 1.1 4.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} ; \text { see Figure } 23 \\ & V_{D D}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{S}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} \\ & V_{S}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 3 \\ & \pm 2 \end{aligned}$	± 6 ± 24 ± 16	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=39.6 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \mathrm{~V}_{S}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{S}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 24 \\ & \\ & V_{S}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 30 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I_{NL} or I_{NH} Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	0.002 5		$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$ ± 0.1	V min V max $\mu \mathrm{A}$ typ $\mu A \max$ pF typ	$V_{\text {IN }}=V_{G N D}$ or $V_{\text {DD }}$
DYNAMIC CHARACTERISTICS Transition Time, $\mathrm{t}_{\text {TRANSITION }}$ t_{ON} (EN) $t_{\text {OFF }}$ (EN) Break-Before-Make Time Delay, t_{D}	$\begin{aligned} & 196 \\ & 256 \\ & 170 \\ & 214 \\ & 130 \\ & 172 \\ & 52 \end{aligned}$	$\begin{aligned} & 276 \\ & 247 \\ & 167 \end{aligned}$	$\begin{aligned} & 314 \\ & 273 \\ & 176 \\ & 13 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {; see Figure } 30 \\ & R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {; see Figure } 32 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {; see Figure } 32 \\ & R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=18 \mathrm{~V} \text {; see Figure } 31 \end{aligned}$

SPECIFICATIONS

Table 4. (Continued)

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\begin{gathered} V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V} \\ \operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{aligned} & 165 \\ & 290 \end{aligned}$	$\begin{array}{\|l\|} 96 \\ 141 \end{array}$	$\begin{aligned} & 49 \\ & 57 \end{aligned}$	mA max mA max
$\begin{gathered} V_{D D}=+20 \mathrm{~V}, V_{S S}=-20 \mathrm{~V} \\ \operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{aligned} & 176 \\ & 282 \end{aligned}$	101 146	51 58	mA max mA max
$\begin{aligned} & V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right) \\ & \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	$\begin{aligned} & 114 \\ & 203 \end{aligned}$	$\begin{aligned} & 72 \\ & 112 \end{aligned}$	$\begin{aligned} & 42 \\ & 53 \end{aligned}$	mA max mA max
$\begin{aligned} & V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right) \\ & \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	$\begin{aligned} & 149 \\ & 263 \end{aligned}$	$\begin{aligned} & 89 \\ & 133 \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \end{aligned}$	mA max mA max

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	48 V
$V_{D D}$ to $G N D$	-0.3 V to +48 V
$V_{\text {SS }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Digital Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Peak Current, Sx or D Pins	515 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, S or D^{2}	Data $+15 \%$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\text {JA }}$	
16-Lead TSSOP, θ_{JA} Thermal Impedance (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, θ_{JA} Thermal Impedance (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 6. (Continued)

Parameter	Rating
Reflow Soldering Peak Temperature, Pb Free	$260(+0 /-5)^{\circ} \mathrm{C}$

1 Overvoltages at the $S x$ and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
${ }^{2}$ See Table 5.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

| ESD (electrostatic discharge) sensitive device. Charged devi- |
| :---: | :---: |
| ces and circuit boards can discharge without detection. Although |
| this product features patented or proprietary protection circuitry, |
| damage may occur on devices subjected to high energy ESD. |
| Therefore, proper ESD precautions should be taken to avoid |
| performance degradation or loss of functionality. |

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

notes

1. $\mathrm{NC}=\mathrm{NO}$ CONNECT.
2. EXPOSED PAD TIED TO SUBSTRATE, $\mathrm{v}_{\text {ss }}$.

Figure 3. LFCSP Pin Configuration
Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
3	1	$V_{s s}$	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. Can be an input or an output.
5	4	S2	Source Terminal. Can be an input or an output.
6	6	D	Drain Terminal. Can be an input or an output.
7 to 9	2, 5, 7, 8, 13	NC	No Connection.
10	9	S4	Source Terminal. Can be an input or an output.
11	10	S3	Source Terminal. Can be an input or an output.
12	11	$V_{D D}$	Most Positive Power Supply Potential.
13	12	GND	Ground (0 V) Reference.
14	14	A1	Logic Control Input.
	EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{Ss}.

TRUTH TABLE

Table 8.

EN	A1	A0	S1	S2	S3	S4	
0	X^{1}	X^{1}	0	Off	Off	Off	Off
1	0	1	On	Off	Off	Off	
1	0	1	Off	On	Off	Off	
1	1	1	Off	Off	On	Off	
1	1	Off	Off	On			

[^0]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. R_{ON} as a Function of $V_{D}\left(V_{\mathrm{S}}\right)$, Dual Supply

Figure 5. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 6. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$, Single Supply

Figure 7. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$, Single Supply

Figure 8. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, $\pm 15 \mathrm{~V}$ Dual Supply

Figure 9. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, ± 20 V Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 12 V Single Supply

Figure 11. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 13. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply

ADG5404

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 16. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 18. On Response vs. Frequency, ± 15 V Dual Supply

Figure 19. Charge Injection vs. Source Voltage

Figure 20. Transition Time vs. Temperature

Figure 21. ACPSRR vs. Frequency, ± 15 V Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 22. $T H D+N$ vs. Frequency, ± 15 V Dual Supply

TEST CIRCUITS

Figure 23. On Resistance

Figure 24. Off Leakage

Figure 25. On Leakage

Figure 26. Off Isolation

Figure 27. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
응
Figure 28. Channel-to-Channel Crosstalk

Figure 29. THD + Noise

TEST CIRCUITS

Figure 30. Address to Output Switching Times

Figure 31. Break-Before-Make Time Delay

Figure 32. Enable-to-Output Switching Delay

Figure 33. Charge Injection

TERMINOLOGY

$I_{D D}$

The positive supply current.

$I_{s s}$

The negative supply current.

$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$

The analog voltage on Terminal D and Terminal S .

R_{ON}

The ohmic resistance between Terminal D and Terminal S .

$\mathrm{R}_{\text {FLAT(ON) }}$

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

I_{S} (Off)

The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.

$I_{D}, I_{S}(O n)$

The channel leakage current with the switch on.

$\mathrm{V}_{\text {INL }}$

The maximum input voltage for Logic 0 .

$\mathrm{V}_{\text {INH }}$

The minimum input voltage for Logic 1.

$I_{\text {INL }}$ (linh)

The input current of the digital input.

C_{s} (Off)

The off switch source capacitance, which is measured with reference to ground.

C_{D} (Off)

The off switch drain capacitance, which is measured with reference to ground.

C_{D}, C_{S} (On)

The on switch capacitance, which is measured with reference to ground.

$\mathrm{C}_{\text {IN }}$

The digital input capacitance.

$t_{\text {TRANSition }}$

The delay time between the 50% and 90% points of the digital input and switch-on condition when switching from one address state to another.
$t_{O N}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 32.

$t_{\text {OFF }}$ (EN)

The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the part's ability to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5404, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junctionisolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 34. Trench Isolation

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5404 high voltage multiplexer allows single-supply operation from 9 V to 40 V
and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5404, as well as three other ADG54xx family members, ADG5412/ADG5413 and ADG5436, achieve an 8 kV human body model ESD rating that provides a robust solution and eliminates the need for separate protection circuitry designs in some applications.

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
RU-14	TSSOP	14-Lead Thin Shrink Small Outline Package
CP-16-17	LFCSP	16-Lead Lead Frame Chip Scale Package

For the latest package outline information and land patterns (footprints), go to Package Index.
Updated: May 07, 2024

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package	
Option				

1 Z = RoHS Compliant Part.

EVALUATION BOARDS

Model 1	Description
EVAL-14TSSOPEBZ	Evaluation board Evaluation board for the 16-lead LFCSP
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.	

[^0]: $1 \mathrm{X}=$ don't care.

