FIRST ORDER
FREE 10% DISCOUNT
Img
|
Pdf
|
Part Number
|
Manufacturers
|
Desc
|
In Stock
|
Packing
|
Rfq
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ECP2M Field Programmable Gate Array (FPGA) IC 520 5435392 95000 1152-BBGA
|
4547
|
1152-BBGA
|
|
||||||||||||||||||||||||||
MachXO2 Field Programmable Gate Array (FPGA) IC 55 256 100-LQFP General Description The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a“per-pin”basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
Advanced 65 nm low power process As low as 22 µW standby power Programmable low swing differential I/Os Stand-by mode and other power saving options
Up to 240 kbits sysMEM™ Embedded BlockRAM Up to 54 kbits Distributed RAM Dedicated FIFO control logic
Up to 256 kbits of User Flash Memory 100,000 write cycles Accessible through WISHBONE, SPI, I2C and JTAG interfaces Can be used as soft processor PROM or as Flash memory
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/Os Generic DDR, DDRX2, DDRX4 Dedicated DDR/DDR2/LPDDR memory with DQS support
Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5 V hysteresis I/Os support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (7 MHz to 400 MHz)
Instant-on – powers up in microseconds Single-chip, secure solution Programmable through JTAG, SPI or I²C Supports background programming of non-vola-tile memory Optional dual boot with external SPI memory
In-field logic update while system operates
On-chip hardened functions: SPI, I²C, timer/counter On-chip oscillator with 5.5% accuracy Unique TraceID for system tracking One Time Programmable (OTP) mode Single power supply with extended operating range IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options Small footprint package options – As small as 2.5 mm x 2.5 mm Density migration supported Advanced halogen-free packaging How to choose FPGA for your project?
|
5129
|
100-LQFP
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 416 5435392 95000 900-BBGA
|
2090
|
900-BBGA
|
|
||||||||||||||||||||||||||
MachXO2 Field Programmable Gate Array (FPGA) IC 104 65536 1280 132-LFBGA, CSPBGA General Description The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a“per-pin”basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
Advanced 65 nm low power process As low as 22 µW standby power Programmable low swing differential I/Os Stand-by mode and other power saving options
Up to 240 kbits sysMEM™ Embedded BlockRAM Up to 54 kbits Distributed RAM Dedicated FIFO control logic
Up to 256 kbits of User Flash Memory 100,000 write cycles Accessible through WISHBONE, SPI, I2C and JTAG interfaces Can be used as soft processor PROM or as Flash memory
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/Os Generic DDR, DDRX2, DDRX4 Dedicated DDR/DDR2/LPDDR memory with DQS support
Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5 V hysteresis I/Os support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (7 MHz to 400 MHz)
Instant-on – powers up in microseconds Single-chip, secure solution Programmable through JTAG, SPI or I²C Supports background programming of non-vola-tile memory Optional dual boot with external SPI memory
In-field logic update while system operates
On-chip hardened functions: SPI, I²C, timer/counter On-chip oscillator with 5.5% accuracy Unique TraceID for system tracking One Time Programmable (OTP) mode Single power supply with extended operating range IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options Small footprint package options – As small as 2.5 mm x 2.5 mm Density migration supported Advanced halogen-free packaging How to choose FPGA for your project?
|
8724
|
132-LFBGA, CSPBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 140 2151424 34000 256-BGA
|
6557
|
256-BGA
|
|
||||||||||||||||||||||||||
MachXO2 Field Programmable Gate Array (FPGA) IC 206 75776 2112 256-LBGA General Description The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a“per-pin”basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
Advanced 65 nm low power process As low as 22 µW standby power Programmable low swing differential I/Os Stand-by mode and other power saving options
Up to 240 kbits sysMEM™ Embedded BlockRAM Up to 54 kbits Distributed RAM Dedicated FIFO control logic
Up to 256 kbits of User Flash Memory 100,000 write cycles Accessible through WISHBONE, SPI, I2C and JTAG interfaces Can be used as soft processor PROM or as Flash memory
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/Os Generic DDR, DDRX2, DDRX4 Dedicated DDR/DDR2/LPDDR memory with DQS support
Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5 V hysteresis I/Os support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (7 MHz to 400 MHz)
Instant-on – powers up in microseconds Single-chip, secure solution Programmable through JTAG, SPI or I²C Supports background programming of non-vola-tile memory Optional dual boot with external SPI memory
In-field logic update while system operates
On-chip hardened functions: SPI, I²C, timer/counter On-chip oscillator with 5.5% accuracy Unique TraceID for system tracking One Time Programmable (OTP) mode Single power supply with extended operating range IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options Small footprint package options – As small as 2.5 mm x 2.5 mm Density migration supported Advanced halogen-free packaging How to choose FPGA for your project?
|
1110
|
256-LBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 303 2151424 34000 484-BBGA
|
1837
|
484-BBGA
|
|
||||||||||||||||||||||||||
MachXO2 Field Programmable Gate Array (FPGA) IC 206 94208 4320 256-LFBGA General Description The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a“per-pin”basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
Advanced 65 nm low power process As low as 22 µW standby power Programmable low swing differential I/Os Stand-by mode and other power saving options
Up to 240 kbits sysMEM™ Embedded BlockRAM Up to 54 kbits Distributed RAM Dedicated FIFO control logic
Up to 256 kbits of User Flash Memory 100,000 write cycles Accessible through WISHBONE, SPI, I2C and JTAG interfaces Can be used as soft processor PROM or as Flash memory
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/Os Generic DDR, DDRX2, DDRX4 Dedicated DDR/DDR2/LPDDR memory with DQS support
Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5 V hysteresis I/Os support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (7 MHz to 400 MHz)
Instant-on – powers up in microseconds Single-chip, secure solution Programmable through JTAG, SPI or I²C Supports background programming of non-vola-tile memory Optional dual boot with external SPI memory
In-field logic update while system operates
On-chip hardened functions: SPI, I²C, timer/counter On-chip oscillator with 5.5% accuracy Unique TraceID for system tracking One Time Programmable (OTP) mode Single power supply with extended operating range IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options Small footprint package options – As small as 2.5 mm x 2.5 mm Density migration supported Advanced halogen-free packaging How to choose FPGA for your project?
|
7186
|
256-LFBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 372 4246528 48000 672-BBGA
|
3227
|
672-BBGA
|
|
||||||||||||||||||||||||||
XP2 Field Programmable Gate Array (FPGA) IC 146 169984 5000 208-BFQFP General Description LatticeXP2 devices combine a Look-up Table (LUT) based FPGA fabric with non-volatile Flash cells in an architecture referred to as flexiFLASH. The flexiFLASH approach provides benefits including instant-on, infinite reconfigurability, on chip storage with FlashBAK embedded block memory and Serial TAG memory and design security. The parts also support Live Update technology with TransFR, 128-bit AES Encryption and Dual-boot technologies. The LatticeXP2 FPGA fabric was optimized for the new technology from the outset with high performance and low cost in mind. LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support and enhanced sysDSP blocks. Lattice Diamond® design software allows large and complex designs to be efficiently implemented using the LatticeXP2 family of FPGA devices. Synthesis library support for LatticeXP2 is available for popular logic synthesis tools. The Diamond software uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP2 device. The Diamond tool extracts the timing from the routing and back-annotates it into the design for timing verification. Lattice provides many pre-designed Intellectual Property (IP) LatticeCORE™ modules for the LatticeXP2 family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Instant-on Infinitely reconfigurable Single chip FlashBAK™ technology Serial TAG memory Design security
TransFR™ technology Secure updates with 128 bit AES encryption Dual-boot with external SPI
Three to eight blocks for high performance Multiply and Accumulate 12 to 32 18x18 multipliers Each block supports one 36x36 multiplier or four 18x18 or eight 9x9 multipliers
Up to 885 Kbits sysMEM™ EBR Up to 83 Kbits Distributed RAM
Up to four analog PLLs per device Clock multiply, divide and phase shifting
sysIO™ buffer supports: – LVCMOS 33/25/18/15/12; LVTTL – SSTL 33/25/18 class I, II – HSTL15 class I; HSTL18 class I, II – PCI – LVDS, Bus-LVDS, MLVDS, LVPECL, RSDS
DDR / DDR2 interfaces up to 200 MHz 7:1 LVDS interfaces support display applications XGMII
5k to 40k LUT4s, 86 to 540 I/Os csBGA, TQFP, PQFP, ftBGA and fpBGA packages Density migration supported
SPI (master and slave) Boot Flash Interface Dual Boot Image supported Soft Error Detect (SED) macro embedded
IEEE 1149.1 and IEEE 1532 Compliant On-chip oscillator for initialization & general use Devices operate with 1.2V power supply How to choose FPGA for your project?
|
7440
|
208-BFQFP
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 436 4642816 67000 1152-BBGA
|
1201
|
1152-BBGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 586 7014400 149000 1156-BBGA
|
8044
|
1156-BBGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 133 716800 17000 256-BGA
|
7533
|
256-BGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 133 1358848 33000 256-BGA
|
5001
|
256-BGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 295 4526080 92000 484-BBGA
|
9012
|
484-BBGA
|
|
||||||||||||||||||||||||||
SC Field Programmable Gate Array (FPGA) IC 942 7987200 115000 1704-BBGA, FCBGA
|
9702
|
1704-BBGA, FCBGA
|
|
||||||||||||||||||||||||||
SC Field Programmable Gate Array (FPGA) IC 378 1966080 25000 900-BBGA
|
1128
|
900-BBGA
|
|
||||||||||||||||||||||||||
SC Field Programmable Gate Array (FPGA) IC 660 5816320 80000 1152-BBGA, FCBGA
|
2659
|
1152-BBGA, FCBGA
|
|
||||||||||||||||||||||||||
SCM Field Programmable Gate Array (FPGA) IC 942 7987200 115000 1704-BBGA, FCBGA
|
3714
|
1704-BBGA, FCBGA
|
|
||||||||||||||||||||||||||
SCM Field Programmable Gate Array (FPGA) IC 378 1966080 25000 900-BBGA
|
1860
|
900-BBGA
|
|
||||||||||||||||||||||||||
SCM Field Programmable Gate Array (FPGA) IC 660 5816320 80000 1152-BBGA, FCBGA
|
8348
|
1152-BBGA, FCBGA
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 244 221184 10000 388-BBGA
|
2587
|
388-BBGA
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 268 331776 15000 388-BBGA
|
9481
|
388-BBGA
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 188 405504 20000 256-BGA
|
1974
|
256-BGA
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 268 405504 20000 388-BBGA
|
7825
|
388-BBGA
|
|
||||||||||||||||||||||||||
XP2 Field Programmable Gate Array (FPGA) IC 363 906240 40000 484-BBGA
|
3392
|
484-BBGA
|
|
||||||||||||||||||||||||||
XP2 Field Programmable Gate Array (FPGA) IC 201 226304 8000 256-LBGA
|
4839
|
256-LBGA
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 136 55296 3000 208-BFQFP
|
1284
|
208-BFQFP
|
|
||||||||||||||||||||||||||
XP Field Programmable Gate Array (FPGA) IC 188 73728 6000 256-BGA
|
6541
|
256-BGA
|
|
||||||||||||||||||||||||||
ORCA® 4 Field Programmable Gate Array (FPGA) IC 372 113664 10368 680-BBGA
|
6261
|
680-BBGA
|
|
||||||||||||||||||||||||||